New standard of functional requirements for prosthetic foot for patients with osseointegration: need for development and prospects for practical application

Authors:

Prof. Pitkin, M.R. Dr. Tech. Sci. Tufts University, Boston, MA 02111, USA. Phone 617-636-7000, e-mail: mpitkin@tuftsmedicalcenter.org

In the heading: Original researches

Year: 2020 Volume: 2 Journal number: 1 

Pages: 15-27

Article type: scientific and practical

UDC: 617.586-089.873.4-77

DOI: 10.26211/2658-4522-2020-2-1-15-27

Annotation:

Introduction. Osseointegrated implants for direct skeletal attachment of transtibial prosthesis carry risks that are yet to be fully resolved: early loosening, mechanical failure of percutaneous and medullar parts of implant, periprosthetic issues, and infections. Unit now, there are no objective criterion for prescribing prosthetic feet, which could prevent the overloading of the abutment.

Aim. To evaluate an index of anthropomorphicity of the feet design being introduced for a traditional socket attachment of leg prostheses in a gait analysis study in amputees with osseointegration and normal subjects as a control.

Materials and methods. We discuss a gait study being conducted in Australia and USA in three amputees wearing their own prostheses: RUSH foot (RUSH), Trias-1C30 (Otto Bock), и Triton-Vertical shock 1C6 (Otto Bock) with initially unknown index of anthropomorphicity and the Free-Flow Foot (Ohio Willow Wood), which positive index was been measured in the prior studies. Further, we compare these indices with those obtained in the early gait analysis study with normal subjects.

Results. It was found that the least bending moment applied to the abutment was generated by the prosthetic foot with greatest index of anthropomorphicity.

Discussion. The consequences of severe trauma, vascular disease, diabetes, or malignancy make the stump skin more vulnerable to destruction, inflammation, infection, and other malignancies [K. E. Buikema et al., 2014], which leads to a reduction in the time of using the prosthesis, reducing the walking distance [H. E. Meulenbelt et al., 2011] and in General, the deterioration of the quality of life. Progress towards solving the problem of skin complications in the traditional attachment of the prosthesis to the sleeve is the development of new designs of sleeves and unloading covers [E. Kos, 2008; T. Pohjolainen et al., 1999]. The remaining high level of skin complications indicates that these efforts are insufficient. New approaches are needed to improve the functionality and safety of prosthetics. One of them, which consists in quantifying the anthropomorphism of prosthetic feet, was presented in this article.

Conclusion. We suggest to use the index of anthropomorphicity in the development of a new standard of functionality regulating design of prosthetic feet prescribed for amputees with osseointegration.

Keywords: , , , ,

Download the full text of the article

List of cited literature:

1. H.H. Aschoff, R.E. Kennon, J.M. Keggi, L.E. Rubin, Transcutaneous, distal femoral, intramedullary attachment for above-the-knee prostheses: an endo- exo device, The Journal of Bone & Joint Surgery 92 Suppl 2 (2010) 180-186.

2. N.V. Kang, C. Pendegrass, L. Marks, G. Blunn, Osseocutaneous integration of an intraosseous transcutaneous amputation prosthesis implant used for reconstruction of a transhumeral amputee: case report, J Hand Surg Am 35(7) (2010) 1130-4.

3. T.J. Shelton, J. Peter Beck, R.D. Bloebaum, K.N. Bachus, Percutaneous osseointegrated prostheses for amputees: Limb compensation in a 12-month ovine model, Journal of Biomechanics 44 (2011) 2601-6.

4. M. Al Muderis, B. B., A. Kumar, S. Laux, Early results of the osseointegration group of Australia accelerated protocol, 4th Int. Conf. Advances in Orthopaedic Osseointegration.
UCSF, San Francisco, Feb 10-12, p. 32, 2012.

5. M. Pitkin, J. Pilling, G. Raykhtsaum, Mechanical properties of totally permeable titanium composite pylon for direct skeletal attachment, Journal of Biomedical Materials Research Part B: Applied Biomaterials 100B(4) (2012) 993-9 [PMC3499100].

6. P.-I. Brangnemark, Anchoring element for implantation in tissue, for holding prosthesis, artificial joint components or the like, United States Patent 5,702,445, 1997.

7. M. Pitkin, G. Raykhtsaum, Skin Integrated Device. US Patent 8257435: http://www.google.com/patents/ US8257435 (2012).

8. M. Pitkin, Design features of implants for direct skeletal attachment of limb prostheses, J Biomed Mater Res A 101(11) (2013) 3339-48.

9. OPRA, OPRA Implant System Instructions for Use, in: https://www.accessdata.fda.gov/cdrh_docs/pdf8/ H080004D.pdf (Ed.) (2016).

10. M. Pitkin, G. Raykhtsaum, O. Galibin, M. Protasov, J. Chihovskaya, I. Belyaeva, Skin and bone integrated prosthetic pylon: a pilot animal study, J Rehabil Res Dev 43(4) (2006) 573–580 [PMID: 17123195].

11. FDA, FDA authorizes use of prosthesis for rehabilitation of above-the-knee amputations, (https://www.fda. gov/NewsEvents/Newsroom/PressAnnouncements/ UCM455103) (2015).

12. S. Sooriakumaran, K.P. Robinson, D.A. Ward, Pattern of Infection of Transfemoral Osseointegration, Proc. 11th World Congress, International Society for Prosthetics & Orthotics, Hong Kong, p. 252 (2004).

13. [13] R. Branemark, O. Berlin, K. Hagberg, P. Bergh, B. Gunterberg, B. Rydevik, A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients, Bone Joint J 96-B(1) (2014) 106-13.

14. G. Tsikandylakis, Ö. Berlin, R. Brånemark, Implant Survival, Adverse Events, and Bone Remodeling of Osseointegrated Percutaneous Implants for Transhumeral Amputees, Clinical Orthopaedics and Related Research 472(10) (2014) 2947–2956.

15. A. Nebergall, C. Bragdon, A. Antonellis, J. Kärrholm, R. Brånemark, H. Malchau, Stable fixation of an osseointegated implant system for above-the-knee amputees, Acta orthopaedica 83(2) (2012) 121-128.

16. ISO 10328:2016(E) Prosthetics — Structural testing of lower-limb prostheses, 2016.

17. ISO 22675:2016(E) Prosthetics — Testing of ankle- foot devices and foot units — Requirements and test methods, 2016.

18. ISO 15032(EN) Prostheses — Structural testing of hip units, 2000.

19. V. Agrawal, R.S. Gailey, I.A. Gaunaurd, C. O’Toole, A.A. Finnieston, Comparison between microprocessor- controlled ankle/foot and conventional prosthetic feet during stair negotiation in people with unilateral transtibial amputation, Journal of Rehabilitation Research & Development 50(7) (2013).

20. G. Stark, Perspectives on how and Why Feet are Prescribed, JPO: Journal of Prosthetics and Orthotics 17(4) (2005) S18-S22.

21. J. Perry, Gait Analysis: normal and pathological function, Slack, Inc., Thorofare, NJ, 1992.

22. R.L. Valmassy, Clinical biomechanics of the lower extremities, Mosby, St. Louis, (1996).

23. M. Pitkin, Ballistic synergy in Normal Gait, in:, Biomechanics of lower limb prosthetics, Springer, Heidelberg, Dondrecht, London, New York (2010), pp. 39-52.

24. M.R. Pitkin, Mechanical Outcomes of a Rolling-Joint Prosthetic Foot and Its Performance in the Dorsiflexion Phase of Transtibial Amputee Gait, J Prosthet Orthot 7(4) (1995) 114-123.

25. M. Pitkin, Theory of Ballistic Gait in Prosthetics, In: Biomechanics of Lower Limb Prosthetics, Springer, Berlin, Heidelberg (2010).

26. C.R. Nott, F.E. Zajac, R.R. Neptune, S.A. Kautz, All joint moments significantly contribute to trunk angular acceleration, J Biomech 43(13) (2010) 2648-52.

27. M. Lenneras, G. Tsikandylakis, M. Trobos, O. Omar, F. Vazirisani, A. Palmquist, O. Berlin, R. Branemark, P. Thomsen, The clinical, radiological, microbiological, and molecular profile of the skin-penetration site of transfemoral amputees treated with bone-anchored prostheses, J Biomed Mater Res A 105(2) (2017) 578-589.

28. M. Pitkin, Effects of Design Variants in Lower Limb Prostheses on Gait Synergy, Journal of Prosthetics and Orthotics 9(3) (1997) 113-122.

29. J.E. Sanders, D.M. Bell, R.M. Okumura, A.J. Dralle, Effects of alignment changes on stance phase pressures and shear stresses on transtibial amputees: measurements from 13 transducer sites, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society 6(1) (1998) 21-31.

30. J.E. Sanders, S.G. Zachariah, A.B. Baker, J.M. Greve, C. Clinton, Effects of changes in cadence, prosthetic componentry, and time on interface pressures and shear stresses of three trans-tibial amputees, Clin Biomech (Bristol, Avon) 15(9) (2000) 684-94.

31. S.U. Raschke, M.S. Orendurff, J.L. Mattie, D.E. Kenyon, O.Y. Jones, D. Moe, L. Winder, A.S. Wong, A. Moreno-Hernández, M.J. Highsmith, Biomechanical characteristics, patient preference and activity level with different prosthetic feet: a randomized double blind trial with laboratory and community testing, Journal of biomechanics 48(1) (2015) 146-152.

32. M.J. Major, M. Twiste, L.P. Kenney, D. Howard, The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation, J Rehabil Res Dev 53(6) (2016) 839-852.

33. S.A. Gard, P.F. Su, R.D. Lipschutz, A.H. Hansen, Effect of prosthetic ankle units on roll-over shape characteristics during walking in persons with bilateral transtibial amputations, J Rehabil Res Dev 48(9) (2011) 1037-48.

34. X. Drevelle, C. Villa, X. Bonnet, J. Bascou, I. Loiret, H. Pillet, Analysis of ankle stiffness for asymptomatic subjects and transfemoral amputees in daily living situations, Comput Methods Biomech Biomed Engin 17 Suppl 1 (2014) 80-1.

35. M.R. Pitkin, Synthesis of a cycloidal mechanism of the prosthetic ankle, Prosthet Orthot Int 20(3) (1996) 159- 71: http://www.oandplibrary.org/poi/1996_03_159.asp.

36. M. Pitkin, Artificial Foot and Ankle. US Patent 5376139, 1994.

37. M. Pitkin, J. Hays, S. Srinivasan, J. Colvin, Artificial foot and ankle, US Patent 6290730 (2001).

38. M. Pitkin, Lowering the forces and pressures on amputee stump with Rolling Joint Foot, Biomechanics (1999) 315-318.

39. M. Pitkin, J. Colvin, P. Quesada, J. Hayes, Gait Analysis of twenty unilateral transtibial amputees, Report, NIH/ NIAMS/NCMRR Grant2R44AR4 3290-02”Prosthetic Rolling Joint Foot and Ankle”, Ohio Willow Wood Company, Mt. Sterling, OH (1999).

40. M. Pitkin, L. Smirnova, K. Scherbina, S. Kurdybailo, S. Evseev, N. Maslov, Analysis of Below-Knee Amputees Performance with Rolling Joint Prosthetic Foot, The Bulletin of the International Council of Sport Science and Physical Education (ICSSPE). St, Petersburg, Russia, April 21-23. (2005) 363.

41. M.R. Pitkin, K.K. Shherbina, V.G. Suslyaev, L.M. Smirnova (2007) Biomexanicheskaya ocenka xod`by` na proteznoj stope Free-Flow tipa Rolling [Biomechanical assessment of walking on a Free- Flow prosthetic foot of the rolling type]. Vestnik Vserossijskoj gil`dii protezistov-ortopedov [Bulletin of the all-Russian Guild of prosthetics and orthopedists] 12(1(27)) 41-43. (In Russian)

42. L.M. Smirnova, M.R. Pitkin, K.K. Shherbina (1999) Opy`t kompleksnogo analiza rezul`tatov protezirovaniya na sistemax “Diasled” (Rossiya) i “F-Socket” (SShA) [Experience of complex analysis of prosthetics results on the systems «diasled» (Russia) and «F-Socket» (USA)]. Rossijskij nacional`ny`j kongress «Chelovek i ego zdorov`e»: 23-26 noyabrya, Sankt-Peterburg [Russian national Congress «Man and his health»: November 23-26, St. Petersburg]. pp. 120-121. (In Russian)

43. M.R. Pitkin, K.K. Shherbina, L.M. Smirnova, V.G. Suslyaev, E.V. Zvonareva (2004) Predvaritel`ny`j biomexanicheskij analiz udobstva vertikal`nogo xokkeya na protezax. Sravnenie skol`zheniya i xod`by` [Preliminary biomechanical analysis of the convenience of vertical hockey on prostheses. Comparison of sliding and walking] Vestnik Vserossijskoj gil`dii protezistov- ortopedov ..9.стереть. [Bulletin of the all-Russian Guild of prosthetics and orthopedists 9] 2003. – № 4 (14). pp. – С. 72-74. (In Russian)

44. L. Frossard, B. Leech, M. Pitkin, Automated characterization of anthropomorphicity of prosthetic feet fitted to bone-anchored transtibial prosthesis, IEEE Transactions on Biomed Eng. doi: 10.1109/TBME.2019.2904713 66( 12) (2019) 3402-3410.

45. L. Frossard, B. Leech, M. Pitkin, Loading applied on osseointegrated implant by transtibial bone-anchored prostheses during daily activities: Preliminary characterization of prosthetic feet, J of Prosthetics and Orthotics In Press (2019).

46. M. Pitkin, K. Scherbina, V. Suslyaev, L. Smirnova, Walking on the Rolling «Free-Flow Foot» prosthesis: biomechanical evaluation of comfort, Bulletin of the Russian Guild of Prosthetists and Orthotists 12(1/27) (2007) 41-43.

47. H. Pillet, X. Drevelle, X. Bonnet, C. Villa, N. Martinet, C. Sauret, J. Bascou, I. Loiret, F. Djian, N. Rapin, J. Mille, P. Thoreux, P. Fodé, J. Paysant, P. Guérit, F. Lavaste, APSIC: Training and fitting amputees during situations of daily living, Irbm 35(2) (2014) 60-65.

48. L. Frossard, B. Leech, M. Pitkin, Inter-participant variability data in loading applied on osseointegrated implant by transtibial bone-anchored prostheses during daily activities, Data In Brief 26(https://doi. org/10.1016/j.dib.2019.104195) (2019).

49. M. Pitkin, L. Frossard, Loading effect of prosthetic feet’s anthropomorphicity on transtibial osseointegrated implant, Military Health System Research Symposium MHSRS-19-00186, Kissime, FL (2019), p. 110.

50. K. Ziegler-Graham, E.J. MacKenzie, P.L. Ephraim, T.G. Travison, R. Brookmeyer, Estimating the prevalence of limb loss in the United States: 2005 to 2050, Archives of physical medicine and rehabilitation 89(3) (2008) 422-429.
51. E.J. MacKenzie, R.C. Castillo, A.S. Jones, M.J. Bosse, J.F. Kellam, A.N. Pollak, L.X. Webb, M.F. Swiontkowski, D.G. Smith, R.W. Sanders, Health-care costs associated with amputation or reconstruction of a limb-threatening injury, JBJS 89(8) (2007) 1685-1692.

52. A.T. Hawkins, A.J. Pallangyo, A.M. Herman, M.J. Schaumeier, A.D. Smith, N.D. Hevelone, D.M. Crandell, L.L. Nguyen, The effect of social integration on outcomes after major lower extremity amputation, Journal of vascular surgery 63(1) (2016) 154-162.

53. T.R. Dillingham, L.E. Pezzin, E.J. MacKenzie, Limb amputation and limb deficiency: epidemiology and recent trends in the United States, Southern medical journal 95(8) (2002) 875-884.

54. C. Frisvoll, J. Clarke-Jenssen, J. Madsen, G. Flugsrud, F. Frihagen, G. Andreassen, T. Bere, Long-term outcomes after high-energy open tibial fractures: Is a salvaged limb superior to prosthesis in terms of physical function and quality of life?, European Journal of Orthopaedic Surgery & Traumatology (2019) 1-8.

55. H. Fischer, A guide to US military casualty statistics: operation freedom’s sentinel, operation inherent resolve, operation new dawn, operation Iraqi freedom, and operation enduring freedom, Congressional Research Service 7 (2015) 5700.

56. Z.T. Harvey, G.A. Loomis, S. Mitsch, I.C. Murphy, S.C. Griffin, B.K. Potter, P. Pasquina, Advanced rehabilitation techniques for the multi-limb amputee, Journal of surgical orthopaedic advances 21(1) (2012) 50.

57. E. Koc, M. Tunca, A. Akar, A.H. Erbil, B. Demiralp, E. Arca, Skin problems in amputees: a descriptive study, International journal of dermatology 47(5) (2008) 463-466.

58. T. Pohjolainen, A clinical evaluation of stumps in lower limb amputees, Prosthet Orthot Int 15(3) (1991) 178-84.

59. H.E. Meulenbelt, J.H. GEERTzEN, M.F. JONkMAN, P.U. DIJkSTRA, Skin problems of the stump in lower limb amputees: 1. A clinical study, Acta dermato- venereologica 91(2) (2011) 173-177.

60. K.E. Buikema, J.H. Meyerle, Amputation stump: Privileged harbor for infections, tumors, and immune disorders, Clinics in dermatology 32(5) (2014) 670-677.

61. E. Colgecen, M. Korkmaz, K. Ozyurt, U. Mermerkaya, C. Kader, A clinical evaluation of skin disorders of lower limb amputation sites, International journal of dermatology 55(4) (2016) 468-472.

62. B.K. Potter, From bench to bedside: a perfect fit? Osseointegration can improve function for patients with amputations, Clinical Orthopaedics and Related Research® 474(1) (2016) 35-37.

63. E. Hansson, K. Hagberg, M. Cawson, T. Brodtkorb, Patients with unilateral transfemoral amputation treated with a percutaneous osseointegrated prosthesis: a cost-effectiveness analysis, Bone Joint J 100(4) (2018) 527-534.

64. J.H. Bowker, The Art of Prosthesis Prescription – in: D.
Smith, Michael, J., Bowker, J. (Ed.), Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles. Chapter 582004.

65. J.M. Czerniecki, Research and clinical selection of foot- ankle systems, JPO: Journal of Prosthetics and Orthotics 17(4) (2005) S35-S37.

66. H. Linde, A. Geurts, C. Hofstad, K. Postema, J. Geertzen, J.v. Limbeek, A systematic literature review of the effect of different prosthetic components on human functioning with a lower limb prosthesis, (2004).

67. N.D. Womac, R.R. Neptune, G.K. Klute, Stiffness and energy storage characteristics of energy storage and return prosthetic feet, Prosthetics and orthotics international (2019) 0309364618823127.

www.xhamaster pornthmovs.com actress priyamani sex videos chuda chudi bangla chuda chudi gotporn.mobi keral sex sex in tamil youtube anythaiporn.com sex between young couple fuckup.xxx jizzman.mobi desi sex scenes sunnyleone hot sex mochito.mobi baglabf
sex movies com pornerbros.mobi hind sexi video desi sexey video justfreeporn.mobi tamil sex video songs mms x faphub.mobi sexihotgirl suny leone porn hdthaimovs.com chennai girl escorts xvideos office erohardcore.info tamil xxxx videos fittrip snyper sobazo.com 6ft in cm
ben 10 sex video hdmovz.mobi videos of boys and girls indian college girl porn videos pornbraze.mobi xnxnxxx desi chudai vedio fuckswille.com hot girl sexy sexgaral pornudetube.mobi nexxx bf videos indaporn.info chodne ka